THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5510 Foundation of Advanced Mathematics 2017-2018 Supplementary Exercise 2

1. Let $S = \{f : \mathbb{R} \to \mathbb{R} : f \text{ is differentiable}\}.$

Define a relation ~ on S such that $f \sim g$ if and only if f'(x) = g'(x) for all $x \in \mathbb{R}$.

- (a) Show that the relation \sim is an equivalence relation.
- (b) Let $f \in S$, what are the elements of the equivalence class [f]?

Ans:

- (a) i. (Reflexive) $f \sim f$ as f'(x) = f'(x) for all $x \in \mathbb{R}$.
 - ii. (Symmetric) If $f \sim g$, then f'(x) = g'(x) which is just g'(x) = f'(x) for all $x \in \mathbb{R}$, so $g \sim f$.
 - iii. (Transitive) If $f \sim g$ and $g \sim h$, then f'(x) = g'(x) and g'(x) = h'(x) for all $x \in \mathbb{R}$, so f'(x) = h'(x) for all $x \in \mathbb{R}$ and $f \sim h$.

Therefore, \sim is an equivalence relation.

(b) $f \sim g$ if and only if f'(x) = g'(x), i.e f'(x) - g'(x) = 0 for all $x \in \mathbb{R}$. Therefore, $f \sim g$ if and only if g(x) = f(x) + C for some constant C, and

$$[f] = \{g \in S : f \sim g\} = \{f + C : C \in \mathbb{R}\}.$$

- 2. Define an equivalence relation \sim on \mathbb{Z} such that $a \sim b$ if and only if b a is divisible by 5.
 - (a) Show that the multiplication on \mathbb{Z} induces a multiplication on $\mathbb{Z}_5 = \mathbb{Z}/\sim$.
 - (b) Show that the induced multiplication on \mathbb{Z}_5 is commutative.

Ans:

(a) Let $m, m', n, n' \in \mathbb{Z}_5$ such that $m \sim m'$ and $n \sim n'$.

Then m' - m = 5M and n' - n = 5N for some integers M and N.

m'n' - mn = (5M + m)(5N + n) - mn = 5(5MN + Mn + mN) where 5MN + Mn + mN is an integer, so $mn \sim m'n'$. Therefore, multiplication on \mathbb{Z} induces a multiplication on \mathbb{Z}_5 .

(b) Let $[m], [n] \in \mathbb{Z}_5$, where $m, n \in \mathbb{Z}$. Then

$$[m] \cdot [n] = [m \cdot n] = [n \cdot m] = [n] \cdot [m]$$

Therefore, the induced multiplication on \mathbb{Z}_5 is commutative.

3. Let $\mathbb{R}[x]$ be the set of all polynomials with real coefficients.

Define a relation ~ on $\mathbb{R}[x]$ such that $P(x) \sim Q(x)$ if and only if Q(x) - P(x) is divisible by $x^2 + 1$.

(a) Show that the relation \sim is an equivalence relation.

- (b) Show that for any polynomial P(x), there exists $ax + b \in \mathbb{R}[x]$ such that [P(x)] = [ax + b], i.e. the equivalence class of P(x) is the same as the equivalence class for some linear polynomial ax + b.
- (c) Let $ax + b, cx + d \in \mathbb{R}[x]$. Show that [ax + b] = [cx + d] if and only if a = c and b = d.
- (d) What is $\mathbb{R}[x]/\sim$?
- (e) Show that the multiplication on $\mathbb{R}[x]$ induces an multiplication on $\mathbb{R}[x]/\sim$.
- (f) What is $[2x+3] \cdot [3x+1]$?

Ans:

- (a) i. (Reflexive) P(x) ~ P(x) as P(x) − P(x) = 0 which is divisible by x²+1 for all P(x) ∈ ℝ[x].
 ii. (Symmetric) If P(x) ~ Q(x), then Q(x) − P(x) is divisible by x²+1 and so P(x) − Q(x) = -(Q(x) − P(x)) is also divisible by x² + 1 which means Q(x) ~ P(x).
 - iii. (Transitive) If $P(x) \sim Q(x)$ and $Q(x) \sim R(x)$, then Q(x) P(x) and R(x) Q(x) is divisible by $x^2 + 1$ and so R(x) - P(x) = (R(x) - Q(x)) + (Q(x) - P(x)) is divisible by $x^2 + 1$.

Therefore, \sim is an equivalence relation on $\mathbb{R}[x]$.

(b) By division algorithm, $P(x) = (x^2 + 1)q(x) + (ax + b)$ for some $q(x) \in \mathbb{R}[x]$ and for some $a, b \in \mathbb{R}$.

Then, $P(x) - (ax - b) = (x^2 + 1)q(x)$, so $(ax + b) \sim P(x)$ and [ax + b] = [P(x)].

- (c) $[ax + b] = [cx + d] \Leftrightarrow (ax + b) \sim (cx + d) \Leftrightarrow (cx + d) (ax + b)$ is divisible by $x^2 + 1$. However, (cx + d) - (ax + b) = (c - a)x + (d - b) is just a linear polynomial and it is divisible by $x^2 + 1$ if and only if it is a zero polynomial, i.e. a = c and b = d.
- (d) Note that every equivalence class in $\mathbb{R}[x]/\sim$ is in form of [P(x)] where $P(x) \in \mathbb{R}[x]$. However, from (b) and (c), we know that for each equivalence class [P(x)] there is one and only one linear polynomial ax + b such that [P(x)] = [ax + b]. Therefore, $\mathbb{R}[x]/\sim = \{[ax + b] : a, b \in \mathbb{R}\}$.
- (e) The proof is similar to 2(a).
- (f) $[2x+3] \cdot [3x+1] = [6x^2 + 11x + 3] = [6(x^2+1) + (11x-3)] = [11x-3].$
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = x^3$. Show that f(x) is injective.

Ans: Suppose that $f(x_1) = f(x_2)$. Then,

$$\begin{aligned} x_1^3 &= x_2^3 \\ x_1^3 - x_2^3 &= 0 \\ (x_1 - x_2)(x_1^2 + x_1 x_2 + x_2^2) &= 0 \end{aligned}$$

Note that $x_1^2 + x_1x_2 + x_2^2 = (x_1 + \frac{1}{2}x_2)^2 + \frac{3}{4}x_2^2 \ge 0$. If $x_1^2 + x_1x_2 + x_2^2 = 0$, then we have $x_1 = x_2 = 0$. If $x_1^2 + x_1x_2 + x_2^2 \ne 0$, then we have $x_1 - x_2 = 0$, i.e. $x_1 = x_2$.

Therefore, $x_1 = x_2$ and f is injective.

(Remark: We cannot say $x_1^3 = x_2^3$ and $x_1 = \sqrt[3]{x_1^3} = \sqrt[3]{x_2^3} = x_2$ since $\sqrt[3]{x}$ is the inverse function of x^3 which is known to exist after showing x^3 is bijective.)

- 5. Let $f: (0,\infty) \to \mathbb{R}$ be a function such that f'(x) > 0 for all $x \in (0,\infty)$.
 - (a) Show that f is an injective function.
 - (b) Show that f may not be a surjective function by giving a counterexample.

Ans:

- (a) By the assumption, f is strictly increasing on $(0, \infty)$, i.e. if $0 < x_1 < x_2$, then $f(x_1) < f(x_2)$. Therefore, $f(x_1) = f(x_2)$ implies $x_1 = x_2$.
- (b) Let $f: (0,\infty) \to \mathbb{R}$ which is defined by $f(x) = 1 \frac{1}{x}$. Then, $f'(x) = \frac{1}{x^2} > 0$, but f(x) < 1 for all $x \in (0,\infty)$, so it is not a surjective function.
- 6. Let A, B and C be subset of \mathbb{R} , and let $g: A \to B$ and $f: C \to \mathbb{R}$ be two bijective functions such that $B \subseteq C$.
 - (a) Show that the composite function $(f \circ g) : A \to \mathbb{R}$ (i.e. $(f \circ g)(x) = f(g(x))$) is injective.
 - (b) Is it true that $f \circ g$ is bijective?

Ans:

(a) Suppose that $(f \circ g)(x_1) = (f \circ g)(x_2)$. Then,

$$f(g(x_1)) = f(g(x_2))$$

$$g(x_1) = g(x_2) \quad (\because f \text{ is injective})$$

$$x_1 = x_2 \quad (\because g \text{ is injective})$$

Therefore, $f \circ g$ is injective.

(b) Suppose that $g: [0,\infty) \to [0,\infty)$ is defined by $g(x) = \sqrt{x}$ and $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = x.

Then $f \circ g : [0,\infty) \to \mathbb{R}$ is defined by $(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = \sqrt{x}$ which is not surjective.