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1. Let S = {f : R→ R : f is differentiable}.

Define a relation ∼ on S such that f ∼ g if and only if f ′(x) = g′(x) for all x ∈ R.

(a) Show that the relation ∼ is an equivalence relation.

(b) Let f ∈ S, what are the elements of the equivalence class [f ]?

Ans:

(a) i. (Reflexive) f ∼ f as f ′(x) = f ′(x) for all x ∈ R.

ii. (Symmetric) If f ∼ g, then f ′(x) = g′(x) which is just g′(x) = f ′(x) for all x ∈ R, so

g ∼ f .

iii. (Transitive) If f ∼ g and g ∼ h, then f ′(x) = g′(x) and g′(x) = h′(x) for all x ∈ R, so

f ′(x) = h′(x) for all x ∈ R and f ∼ h.

Therefore, ∼ is an equivalence relation.

(b) f ∼ g if and only if f ′(x) = g′(x), i.e f ′(x)− g′(x) = 0 for all x ∈ R.

Therefore, f ∼ g if and only if g(x) = f(x) + C for some constant C, and

[f ] = {g ∈ S : f ∼ g} = {f + C : C ∈ R}.

2. Define an equivalence relation ∼ on Z such that a ∼ b if and only if b− a is divisible by 5.

(a) Show that the multiplication on Z induces a multiplication on Z5 = Z/ ∼.

(b) Show that the induced multiplication on Z5 is commutative.

Ans:

(a) Let m,m′, n, n′ ∈ Z5 such that m ∼ m′ and n ∼ n′.

Then m′ −m = 5M and n′ − n = 5N for some integers M and N .

m′n′ −mn = (5M + m)(5N + n)−mn = 5(5MN + Mn + mN) where 5MN + Mn + mN is

an integer, so mn ∼ m′n′. Therefore, multiplication on Z induces a multiplication on Z5.

(b) Let [m], [n] ∈ Z5, where m,n ∈ Z. Then

[m] · [n] = [m · n] = [n ·m] = [n] · [m]

Therefore, the induced multiplication on Z5 is commutative.

3. Let R[x] be the set of all polynomials with real coefficients.

Define a relation ∼ on R[x] such that P (x) ∼ Q(x) if and only if Q(x)−P (x) is divisible by x2 + 1.

(a) Show that the relation ∼ is an equivalence relation.
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(b) Show that for any polynomial P (x), there exists ax+ b ∈ R[x] such that [P (x)] = [ax+ b], i.e.

the equivalence class of P (x) is the same as the equivalence class for some linear polynomial

ax + b.

(c) Let ax + b, cx + d ∈ R[x]. Show that [ax + b] = [cx + d] if and only if a = c and b = d.

(d) What is R[x]/ ∼?

(e) Show that the multiplication on R[x] induces an multiplication on R[x]/ ∼.

(f) What is [2x + 3] · [3x + 1]?

Ans:

(a) i. (Reflexive) P (x) ∼ P (x) as P (x)−P (x) = 0 which is divisible by x2+1 for all P (x) ∈ R[x].

ii. (Symmetric) If P (x) ∼ Q(x), then Q(x)−P (x) is divisible by x2+1 and so P (x)−Q(x) =

−(Q(x)− P (x)) is also divisible by x2 + 1 which means Q(x) ∼ P (x).

iii. (Transitive) If P (x) ∼ Q(x) and Q(x) ∼ R(x), then Q(x) − P (x) and R(x) − Q(x) is

divisible by x2 + 1 and so R(x)− P (x) = (R(x) −Q(x)) + (Q(x)− P (x)) is divisible by

x2 + 1.

Therefore, ∼ is an equivalence relation on R[x].

(b) By division algorithm, P (x) = (x2 + 1)q(x) + (ax + b) for some q(x) ∈ R[x] and for some

a, b ∈ R.

Then, P (x)− (ax− b) = (x2 + 1)q(x), so (ax + b) ∼ P (x) and [ax + b] = [P (x)].

(c) [ax + b] = [cx + d]⇔ (ax + b) ∼ (cx + d)⇔ (cx + d)− (ax + b) is divisible by x2 + 1.

However, (cx+ d)− (ax+ b) = (c− a)x+ (d− b) is just a linear polynomial and it is divisible

by x2 + 1 if and only if it is a zero polynomial, i.e. a = c and b = d.

(d) Note that every equivalence class in R[x]/ ∼ is in form of [P (x)] where P (x) ∈ R[x]. However,

from (b) and (c), we know that for each equivalence class [P (x)] there is one and only one

linear polynomial ax+b such that [P (x)] = [ax+b]. Therefore, R[x]/ ∼= {[ax+b] : a, b ∈ R}.

(e) The proof is similar to 2(a).

(f) [2x + 3] · [3x + 1] = [6x2 + 11x + 3] = [6(x2 + 1) + (11x− 3)] = [11x− 3].

4. Let f : R→ R be a function defined by f(x) = x3. Show that f(x) is injective.

Ans: Suppose that f(x1) = f(x2). Then,

x3
1 = x3

2

x3
1 − x3

2 = 0

(x1 − x2)(x2
1 + x1x2 + x2

2) = 0

Note that x2
1+x1x2+x2

2 = (x1+
1

2
x2)2+

3

4
x2
2 ≥ 0. If x2

1+x1x2+x2
2 = 0, then we have x1 = x2 = 0.

If x2
1 + x1x2 + x2

2 6= 0, then we have x1 − x2 = 0, i.e. x1 = x2.

Therefore, x1 = x2 and f is injective.

(Remark: We cannot say x3
1 = x3

2 and x1 = 3
√

x3
1 = 3

√
x3
2 = x2 since 3

√
x is the inverse function of

x3 which is known to exist after showing x3 is bijective.)
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5. Let f : (0,∞)→ R be a function such that f ′(x) > 0 for all x ∈ (0,∞).

(a) Show that f is an injective function.

(b) Show that f may not be a surjective function by giving a counterexample.

Ans:

(a) By the assumption, f is strictly increasing on (0,∞), i.e. if 0 < x1 < x2, then f(x1) < f(x2).

Therefore, f(x1) = f(x2) implies x1 = x2.

(b) Let f : (0,∞) → R which is defined by f(x) = 1 − 1

x
. Then, f ′(x) =

1

x2
> 0, but f(x) < 1

for all x ∈ (0,∞), so it is not a surjective function.

6. Let A, B and C be subset of R, and let g : A→ B and f : C → R be two bijective functions such

that B ⊆ C.

(a) Show that the composite function (f ◦ g) : A→ R (i.e. (f ◦ g)(x) = f(g(x)) ) is injective.

(b) Is it true that f ◦ g is bijective?

Ans:

(a) Suppose that (f ◦ g)(x1) = (f ◦ g)(x2). Then,

f(g(x1)) = f(g(x2))

g(x1) = g(x2) (∵ f is injective)

x1 = x2 (∵ g is injective)

Therefore, f ◦ g is injective.

(b) Suppose that g : [0,∞) → [0,∞) is defined by g(x) =
√
x and f : R → R is defined by

f(x) = x.

Then f ◦ g : [0,∞) → R is defined by (f ◦ g)(x) = f(g(x)) = f(
√
x) =

√
x which is not

surjective.
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